Demo entry 4118266

spark-sample-selection

   

Submitted by holden on Mar 21, 2016 at 22:44
Language: Scala. Code size: 103.3 kB.

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark

import java.io._
import java.lang.reflect.Constructor
import java.net.URI
import java.util.{Arrays, Properties, UUID}
import java.util.concurrent.ConcurrentMap
import java.util.concurrent.atomic.{AtomicBoolean, AtomicInteger, AtomicReference}

import scala.annotation.tailrec
import scala.collection.JavaConverters._
import scala.collection.Map
import scala.collection.generic.Growable
import scala.collection.mutable.HashMap
import scala.language.implicitConversions
import scala.reflect.{classTag, ClassTag}
import scala.util.control.NonFatal

import com.google.common.collect.MapMaker
import org.apache.commons.lang.SerializationUtils
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{ArrayWritable, BooleanWritable, BytesWritable, DoubleWritable,
  FloatWritable, IntWritable, LongWritable, NullWritable, Text, Writable}
import org.apache.hadoop.mapred.{FileInputFormat, InputFormat, JobConf, SequenceFileInputFormat,
  TextInputFormat}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat, Job => NewHadoopJob}
import org.apache.hadoop.mapreduce.lib.input.{FileInputFormat => NewFileInputFormat}
import org.apache.mesos.MesosNativeLibrary

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.deploy.{LocalSparkCluster, SparkHadoopUtil}
import org.apache.spark.input.{FixedLengthBinaryInputFormat, PortableDataStream, StreamInputFormat,
  WholeTextFileInputFormat}
import org.apache.spark.internal.Logging
import org.apache.spark.io.CompressionCodec
import org.apache.spark.partial.{ApproximateEvaluator, PartialResult}
import org.apache.spark.rdd._
import org.apache.spark.rpc.RpcEndpointRef
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.cluster.{CoarseGrainedSchedulerBackend,
  SparkDeploySchedulerBackend}
import org.apache.spark.scheduler.cluster.mesos.{CoarseMesosSchedulerBackend, MesosSchedulerBackend}
import org.apache.spark.scheduler.local.LocalBackend
import org.apache.spark.storage._
import org.apache.spark.storage.BlockManagerMessages.TriggerThreadDump
import org.apache.spark.ui.{ConsoleProgressBar, SparkUI}
import org.apache.spark.ui.jobs.JobProgressListener
import org.apache.spark.util._

/**
 * Main entry point for Spark functionality. A SparkContext represents the connection to a Spark
 * cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
 *
 * Only one SparkContext may be active per JVM.  You must `stop()` the active SparkContext before
 * creating a new one.  This limitation may eventually be removed; see SPARK-2243 for more details.
 *
 * @param config a Spark Config object describing the application configuration. Any settings in
 *   this config overrides the default configs as well as system properties.
 */
class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationClient {

  // The call site where this SparkContext was constructed.
  private val creationSite: CallSite = Utils.getCallSite()

  // If true, log warnings instead of throwing exceptions when multiple SparkContexts are active
  private val allowMultipleContexts: Boolean =
    config.getBoolean("spark.driver.allowMultipleContexts", false)

  // In order to prevent multiple SparkContexts from being active at the same time, mark this
  // context as having started construction.
  // NOTE: this must be placed at the beginning of the SparkContext constructor.
  SparkContext.markPartiallyConstructed(this, allowMultipleContexts)

  val startTime = System.currentTimeMillis()

  private[spark] val stopped: AtomicBoolean = new AtomicBoolean(false)

  private def assertNotStopped(): Unit = {
    if (stopped.get()) {
      val activeContext = SparkContext.activeContext.get()
      val activeCreationSite =
        if (activeContext == null) {
          "(No active SparkContext.)"
        } else {
          activeContext.creationSite.longForm
        }
      throw new IllegalStateException(
        s"""Cannot call methods on a stopped SparkContext.
           |This stopped SparkContext was created at:
           |
           |${creationSite.longForm}
           |
           |The currently active SparkContext was created at:
           |
           |$activeCreationSite
         """.stripMargin)
    }
  }

  /**
   * Create a SparkContext that loads settings from system properties (for instance, when
   * launching with ./bin/spark-submit).
   */
  def this() = this(new SparkConf())

  /**
   * Alternative constructor that allows setting common Spark properties directly
   *
   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName A name for your application, to display on the cluster web UI
   * @param conf a [[org.apache.spark.SparkConf]] object specifying other Spark parameters
   */
  def this(master: String, appName: String, conf: SparkConf) =
    this(SparkContext.updatedConf(conf, master, appName))

  /**
   * Alternative constructor that allows setting common Spark properties directly
   *
   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName A name for your application, to display on the cluster web UI.
   * @param sparkHome Location where Spark is installed on cluster nodes.
   * @param jars Collection of JARs to send to the cluster. These can be paths on the local file
   *             system or HDFS, HTTP, HTTPS, or FTP URLs.
   * @param environment Environment variables to set on worker nodes.
   */
  def this(
      master: String,
      appName: String,
      sparkHome: String = null,
      jars: Seq[String] = Nil,
      environment: Map[String, String] = Map()) =
  {
    this(SparkContext.updatedConf(new SparkConf(), master, appName, sparkHome, jars, environment))
  }

  // NOTE: The below constructors could be consolidated using default arguments. Due to
  // Scala bug SI-8479, however, this causes the compile step to fail when generating docs.
  // Until we have a good workaround for that bug the constructors remain broken out.

  /**
   * Alternative constructor that allows setting common Spark properties directly
   *
   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName A name for your application, to display on the cluster web UI.
   */
  private[spark] def this(master: String, appName: String) =
    this(master, appName, null, Nil, Map())

  /**
   * Alternative constructor that allows setting common Spark properties directly
   *
   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName A name for your application, to display on the cluster web UI.
   * @param sparkHome Location where Spark is installed on cluster nodes.
   */
  private[spark] def this(master: String, appName: String, sparkHome: String) =
    this(master, appName, sparkHome, Nil, Map())

  /**
   * Alternative constructor that allows setting common Spark properties directly
   *
   * @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
   * @param appName A name for your application, to display on the cluster web UI.
   * @param sparkHome Location where Spark is installed on cluster nodes.
   * @param jars Collection of JARs to send to the cluster. These can be paths on the local file
   *             system or HDFS, HTTP, HTTPS, or FTP URLs.
   */
  private[spark] def this(master: String, appName: String, sparkHome: String, jars: Seq[String]) =
    this(master, appName, sparkHome, jars, Map())

  // log out Spark Version in Spark driver log
  logInfo(s"Running Spark version $SPARK_VERSION")

  /* ------------------------------------------------------------------------------------- *
   | Private variables. These variables keep the internal state of the context, and are    |
   | not accessible by the outside world. They're mutable since we want to initialize all  |
   | of them to some neutral value ahead of time, so that calling "stop()" while the       |
   | constructor is still running is safe.                                                 |
   * ------------------------------------------------------------------------------------- */

  private var _conf: SparkConf = _
  private var _eventLogDir: Option[URI] = None
  private var _eventLogCodec: Option[String] = None
  private var _env: SparkEnv = _
  private var _jobProgressListener: JobProgressListener = _
  private var _statusTracker: SparkStatusTracker = _
  private var _progressBar: Option[ConsoleProgressBar] = None
  private var _ui: Option[SparkUI] = None
  private var _hadoopConfiguration: Configuration = _
  private var _executorMemory: Int = _
  private var _schedulerBackend: SchedulerBackend = _
  private var _taskScheduler: TaskScheduler = _
  private var _heartbeatReceiver: RpcEndpointRef = _
  @volatile private var _dagScheduler: DAGScheduler = _
  private var _applicationId: String = _
  private var _applicationAttemptId: Option[String] = None
  private var _eventLogger: Option[EventLoggingListener] = None
  private var _executorAllocationManager: Option[ExecutorAllocationManager] = None
  private var _cleaner: Option[ContextCleaner] = None
  private var _listenerBusStarted: Boolean = false
  private var _jars: Seq[String] = _
  private var _files: Seq[String] = _
  private var _shutdownHookRef: AnyRef = _

  /* ------------------------------------------------------------------------------------- *
   | Accessors and public fields. These provide access to the internal state of the        |
   | context.                                                                              |
   * ------------------------------------------------------------------------------------- */

  private[spark] def conf: SparkConf = _conf

  /**
   * Return a copy of this SparkContext's configuration. The configuration ''cannot'' be
   * changed at runtime.
   */
  def getConf: SparkConf = conf.clone()

  def jars: Seq[String] = _jars
  def files: Seq[String] = _files
  def master: String = _conf.get("spark.master")
  def deployMode: String = _conf.getOption("spark.submit.deployMode").getOrElse("client")
  def appName: String = _conf.get("spark.app.name")

  private[spark] def isEventLogEnabled: Boolean = _conf.getBoolean("spark.eventLog.enabled", false)
  private[spark] def eventLogDir: Option[URI] = _eventLogDir
  private[spark] def eventLogCodec: Option[String] = _eventLogCodec

  def isLocal: Boolean = Utils.isLocalMaster(_conf)

  /**
   * @return true if context is stopped or in the midst of stopping.
   */
  def isStopped: Boolean = stopped.get()

  // An asynchronous listener bus for Spark events
  private[spark] val listenerBus = new LiveListenerBus

  // This function allows components created by SparkEnv to be mocked in unit tests:
  private[spark] def createSparkEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus): SparkEnv = {
    SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master))
  }

  private[spark] def env: SparkEnv = _env

  // Used to store a URL for each static file/jar together with the file's local timestamp
  private[spark] val addedFiles = HashMap[String, Long]()
  private[spark] val addedJars = HashMap[String, Long]()

  // Keeps track of all persisted RDDs
  private[spark] val persistentRdds = {
    val map: ConcurrentMap[Int, RDD[_]] = new MapMaker().weakValues().makeMap[Int, RDD[_]]()
    map.asScala
  }
  private[spark] def jobProgressListener: JobProgressListener = _jobProgressListener

  def statusTracker: SparkStatusTracker = _statusTracker

  private[spark] def progressBar: Option[ConsoleProgressBar] = _progressBar

  private[spark] def ui: Option[SparkUI] = _ui

  /**
   * A default Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse.
   *
   * '''Note:''' As it will be reused in all Hadoop RDDs, it's better not to modify it unless you
   * plan to set some global configurations for all Hadoop RDDs.
   */
  def hadoopConfiguration: Configuration = _hadoopConfiguration

  private[spark] def executorMemory: Int = _executorMemory

  // Environment variables to pass to our executors.
  private[spark] val executorEnvs = HashMap[String, String]()

  // Set SPARK_USER for user who is running SparkContext.
  val sparkUser = Utils.getCurrentUserName()

  private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend

  private[spark] def taskScheduler: TaskScheduler = _taskScheduler
  private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = {
    _taskScheduler = ts
  }

  private[spark] def dagScheduler: DAGScheduler = _dagScheduler
  private[spark] def dagScheduler_=(ds: DAGScheduler): Unit = {
    _dagScheduler = ds
  }

  /**
   * A unique identifier for the Spark application.
   * Its format depends on the scheduler implementation.
   * (i.e.
   *  in case of local spark app something like 'local-1433865536131'
   *  in case of YARN something like 'application_1433865536131_34483'
   * )
   */
  def applicationId: String = _applicationId
  def applicationAttemptId: Option[String] = _applicationAttemptId

  private[spark] def eventLogger: Option[EventLoggingListener] = _eventLogger

  private[spark] def executorAllocationManager: Option[ExecutorAllocationManager] =
    _executorAllocationManager

  private[spark] def cleaner: Option[ContextCleaner] = _cleaner

  private[spark] var checkpointDir: Option[String] = None

  // Thread Local variable that can be used by users to pass information down the stack
  protected[spark] val localProperties = new InheritableThreadLocal[Properties] {
    override protected def childValue(parent: Properties): Properties = {
      // Note: make a clone such that changes in the parent properties aren't reflected in
      // the those of the children threads, which has confusing semantics (SPARK-10563).
      SerializationUtils.clone(parent).asInstanceOf[Properties]
    }
    override protected def initialValue(): Properties = new Properties()
  }

  /* ------------------------------------------------------------------------------------- *
   | Initialization. This code initializes the context in a manner that is exception-safe. |
   | All internal fields holding state are initialized here, and any error prompts the     |
   | stop() method to be called.                                                           |
   * ------------------------------------------------------------------------------------- */

  private def warnSparkMem(value: String): String = {
    logWarning("Using SPARK_MEM to set amount of memory to use per executor process is " +
      "deprecated, please use spark.executor.memory instead.")
    value
  }

  /** Control our logLevel. This overrides any user-defined log settings.
   * @param logLevel The desired log level as a string.
   * Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN
   */
  def setLogLevel(logLevel: String) {
    val validLevels = Seq("ALL", "DEBUG", "ERROR", "FATAL", "INFO", "OFF", "TRACE", "WARN")
    if (!validLevels.contains(logLevel)) {
      throw new IllegalArgumentException(
        s"Supplied level $logLevel did not match one of: ${validLevels.mkString(",")}")
    }
    Utils.setLogLevel(org.apache.log4j.Level.toLevel(logLevel))
  }

  try {
    _conf = config.clone()
    _conf.validateSettings()

    if (!_conf.contains("spark.master")) {
      throw new SparkException("A master URL must be set in your configuration")
    }
    if (!_conf.contains("spark.app.name")) {
      throw new SparkException("An application name must be set in your configuration")
    }

    // System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster
    if (master == "yarn" && deployMode == "cluster" && !_conf.contains("spark.yarn.app.id")) {
      throw new SparkException("Detected yarn cluster mode, but isn't running on a cluster. " +
        "Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")
    }

    if (_conf.getBoolean("spark.logConf", false)) {
      logInfo("Spark configuration:\n" + _conf.toDebugString)
    }

    // Set Spark driver host and port system properties
    _conf.setIfMissing("spark.driver.host", Utils.localHostName())
    _conf.setIfMissing("spark.driver.port", "0")

    _conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER)

    _jars = _conf.getOption("spark.jars").map(_.split(",")).map(_.filter(_.nonEmpty)).toSeq.flatten
    _files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.nonEmpty))
      .toSeq.flatten

    _eventLogDir =
      if (isEventLogEnabled) {
        val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR)
          .stripSuffix("/")
        Some(Utils.resolveURI(unresolvedDir))
      } else {
        None
      }

    _eventLogCodec = {
      val compress = _conf.getBoolean("spark.eventLog.compress", false)
      if (compress && isEventLogEnabled) {
        Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName)
      } else {
        None
      }
    }

    if (master == "yarn" && deployMode == "client") System.setProperty("SPARK_YARN_MODE", "true")

    // "_jobProgressListener" should be set up before creating SparkEnv because when creating
    // "SparkEnv", some messages will be posted to "listenerBus" and we should not miss them.
    _jobProgressListener = new JobProgressListener(_conf)
    listenerBus.addListener(jobProgressListener)

    // Create the Spark execution environment (cache, map output tracker, etc)
    _env = createSparkEnv(_conf, isLocal, listenerBus)
    SparkEnv.set(_env)

    // If running the REPL, register the repl's output dir with the file server.
    _conf.getOption("spark.repl.class.outputDir").foreach { path =>
      val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))
      _conf.set("spark.repl.class.uri", replUri)
    }

    _statusTracker = new SparkStatusTracker(this)

    _progressBar =
      if (_conf.getBoolean("spark.ui.showConsoleProgress", true) && !log.isInfoEnabled) {
        Some(new ConsoleProgressBar(this))
      } else {
        None
      }

    _ui =
      if (conf.getBoolean("spark.ui.enabled", true)) {
        Some(SparkUI.createLiveUI(this, _conf, listenerBus, _jobProgressListener,
          _env.securityManager, appName, startTime = startTime))
      } else {
        // For tests, do not enable the UI
        None
      }
    // Bind the UI before starting the task scheduler to communicate
    // the bound port to the cluster manager properly
    _ui.foreach(_.bind())

    _hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf)

    // Add each JAR given through the constructor
    if (jars != null) {
      jars.foreach(addJar)
    }

    if (files != null) {
      files.foreach(addFile)
    }

    _executorMemory = _conf.getOption("spark.executor.memory")
      .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY")))
      .orElse(Option(System.getenv("SPARK_MEM"))
      .map(warnSparkMem))
      .map(Utils.memoryStringToMb)
      .getOrElse(1024)

    // Convert java options to env vars as a work around
    // since we can't set env vars directly in sbt.
    for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))
      value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {
      executorEnvs(envKey) = value
    }
    Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>
      executorEnvs("SPARK_PREPEND_CLASSES") = v
    }
    // The Mesos scheduler backend relies on this environment variable to set executor memory.
    // TODO: Set this only in the Mesos scheduler.
    executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"
    executorEnvs ++= _conf.getExecutorEnv
    executorEnvs("SPARK_USER") = sparkUser

    // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will
    // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)
    _heartbeatReceiver = env.rpcEnv.setupEndpoint(
      HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

    // Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

    // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
    // constructor
    _taskScheduler.start()

    _applicationId = _taskScheduler.applicationId()
    _applicationAttemptId = taskScheduler.applicationAttemptId()
    _conf.set("spark.app.id", _applicationId)
    _ui.foreach(_.setAppId(_applicationId))
    _env.blockManager.initialize(_applicationId)

    // The metrics system for Driver need to be set spark.app.id to app ID.
    // So it should start after we get app ID from the task scheduler and set spark.app.id.
    _env.metricsSystem.start()
    // Attach the driver metrics servlet handler to the web ui after the metrics system is started.
    _env.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))

    _eventLogger =
      if (isEventLogEnabled) {
        val logger =
          new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,
            _conf, _hadoopConfiguration)
        logger.start()
        listenerBus.addListener(logger)
        Some(logger)
      } else {
        None
      }

    // Optionally scale number of executors dynamically based on workload. Exposed for testing.
    val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
    _executorAllocationManager =
      if (dynamicAllocationEnabled) {
        Some(new ExecutorAllocationManager(this, listenerBus, _conf))
      } else {
        None
      }
    _executorAllocationManager.foreach(_.start())

    _cleaner =
      if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
        Some(new ContextCleaner(this))
      } else {
        None
      }
    _cleaner.foreach(_.start())

    setupAndStartListenerBus()
    postEnvironmentUpdate()
    postApplicationStart()

    // Post init
    _taskScheduler.postStartHook()
    _env.metricsSystem.registerSource(_dagScheduler.metricsSource)
    _env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))
    _executorAllocationManager.foreach { e =>
      _env.metricsSystem.registerSource(e.executorAllocationManagerSource)
    }

    // Make sure the context is stopped if the user forgets about it. This avoids leaving
    // unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM
    // is killed, though.
    _shutdownHookRef = ShutdownHookManager.addShutdownHook(
      ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>
      logInfo("Invoking stop() from shutdown hook")
      stop()
    }
  } catch {
    case NonFatal(e) =>
      logError("Error initializing SparkContext.", e)
      try {
        stop()
      } catch {
        case NonFatal(inner) =>
          logError("Error stopping SparkContext after init error.", inner)
      } finally {
        throw e
      }
  }

  /**
   * Called by the web UI to obtain executor thread dumps.  This method may be expensive.
   * Logs an error and returns None if we failed to obtain a thread dump, which could occur due
   * to an executor being dead or unresponsive or due to network issues while sending the thread
   * dump message back to the driver.
   */
  private[spark] def getExecutorThreadDump(executorId: String): Option[Array[ThreadStackTrace]] = {
    try {
      if (executorId == SparkContext.DRIVER_IDENTIFIER) {
        Some(Utils.getThreadDump())
      } else {
        val endpointRef = env.blockManager.master.getExecutorEndpointRef(executorId).get
        Some(endpointRef.askWithRetry[Array[ThreadStackTrace]](TriggerThreadDump))
      }
    } catch {
      case e: Exception =>
        logError(s"Exception getting thread dump from executor $executorId", e)
        None
    }
  }

  private[spark] def getLocalProperties: Properties = localProperties.get()

  private[spark] def setLocalProperties(props: Properties) {
    localProperties.set(props)
  }

  /**
   * Set a local property that affects jobs submitted from this thread, such as the
   * Spark fair scheduler pool.
   */
  def setLocalProperty(key: String, value: String) {
    if (value == null) {
      localProperties.get.remove(key)
    } else {
      localProperties.get.setProperty(key, value)
    }
  }

  /**
   * Get a local property set in this thread, or null if it is missing. See
   * [[org.apache.spark.SparkContext.setLocalProperty]].
   */
  def getLocalProperty(key: String): String =
    Option(localProperties.get).map(_.getProperty(key)).orNull

  /** Set a human readable description of the current job. */
  def setJobDescription(value: String) {
    setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, value)
  }

  /**
   * Assigns a group ID to all the jobs started by this thread until the group ID is set to a
   * different value or cleared.
   *
   * Often, a unit of execution in an application consists of multiple Spark actions or jobs.
   * Application programmers can use this method to group all those jobs together and give a
   * group description. Once set, the Spark web UI will associate such jobs with this group.
   *
   * The application can also use [[org.apache.spark.SparkContext.cancelJobGroup]] to cancel all
   * running jobs in this group. For example,
   * {{{
   * // In the main thread:
   * sc.setJobGroup("some_job_to_cancel", "some job description")
   * sc.parallelize(1 to 10000, 2).map { i => Thread.sleep(10); i }.count()
   *
   * // In a separate thread:
   * sc.cancelJobGroup("some_job_to_cancel")
   * }}}
   *
   * If interruptOnCancel is set to true for the job group, then job cancellation will result
   * in Thread.interrupt() being called on the job's executor threads. This is useful to help ensure
   * that the tasks are actually stopped in a timely manner, but is off by default due to HDFS-1208,
   * where HDFS may respond to Thread.interrupt() by marking nodes as dead.
   */
  def setJobGroup(groupId: String, description: String, interruptOnCancel: Boolean = false) {
    setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, description)
    setLocalProperty(SparkContext.SPARK_JOB_GROUP_ID, groupId)
    // Note: Specifying interruptOnCancel in setJobGroup (rather than cancelJobGroup) avoids
    // changing several public APIs and allows Spark cancellations outside of the cancelJobGroup
    // APIs to also take advantage of this property (e.g., internal job failures or canceling from
    // JobProgressTab UI) on a per-job basis.
    setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, interruptOnCancel.toString)
  }

  /** Clear the current thread's job group ID and its description. */
  def clearJobGroup() {
    setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, null)
    setLocalProperty(SparkContext.SPARK_JOB_GROUP_ID, null)
    setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, null)
  }

  /**
   * Execute a block of code in a scope such that all new RDDs created in this body will
   * be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](this)(body)

  // Methods for creating RDDs

  /** Distribute a local Scala collection to form an RDD.
   *
   * @note Parallelize acts lazily. If `seq` is a mutable collection and is altered after the call
   * to parallelize and before the first action on the RDD, the resultant RDD will reflect the
   * modified collection. Pass a copy of the argument to avoid this.
   * @note avoid using `parallelize(Seq())` to create an empty `RDD`. Consider `emptyRDD` for an
   * RDD with no partitions, or `parallelize(Seq[T]())` for an RDD of `T` with empty partitions.
   */
  def parallelize[T: ClassTag](
      seq: Seq[T],
      numSlices: Int = defaultParallelism): RDD[T] = withScope {
    assertNotStopped()
    new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
  }

  /**
   * Creates a new RDD[Long] containing elements from `start` to `end`(exclusive), increased by
   * `step` every element.
   *
   * @note if we need to cache this RDD, we should make sure each partition does not exceed limit.
   *
   * @param start the start value.
   * @param end the end value.
   * @param step the incremental step
   * @param numSlices the partition number of the new RDD.
   * @return
   */
  def range(
      start: Long,
      end: Long,
      step: Long = 1,
      numSlices: Int = defaultParallelism): RDD[Long] = withScope {
    assertNotStopped()
    // when step is 0, range will run infinitely
    require(step != 0, "step cannot be 0")
    val numElements: BigInt = {
      val safeStart = BigInt(start)
      val safeEnd = BigInt(end)
      if ((safeEnd - safeStart) % step == 0 || (safeEnd > safeStart) != (step > 0)) {
        (safeEnd - safeStart) / step
      } else {
        // the remainder has the same sign with range, could add 1 more
        (safeEnd - safeStart) / step + 1
      }
    }
    parallelize(0 until numSlices, numSlices).mapPartitionsWithIndex((i, _) => {
      val partitionStart = (i * numElements) / numSlices * step + start
      val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start
      def getSafeMargin(bi: BigInt): Long =
        if (bi.isValidLong) {
          bi.toLong
        } else if (bi > 0) {
          Long.MaxValue
        } else {
          Long.MinValue
        }
      val safePartitionStart = getSafeMargin(partitionStart)
      val safePartitionEnd = getSafeMargin(partitionEnd)

      new Iterator[Long] {
        private[this] var number: Long = safePartitionStart
        private[this] var overflow: Boolean = false

        override def hasNext =
          if (!overflow) {
            if (step > 0) {
              number < safePartitionEnd
            } else {
              number > safePartitionEnd
            }
          } else false

        override def next() = {
          val ret = number
          number += step
          if (number < ret ^ step < 0) {
            // we have Long.MaxValue + Long.MaxValue < Long.MaxValue
            // and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a step
            // back, we are pretty sure that we have an overflow.
            overflow = true
          }
          ret
        }
      }
    })
  }

  /** Distribute a local Scala collection to form an RDD.
   *
   * This method is identical to `parallelize`.
   */
  def makeRDD[T: ClassTag](
      seq: Seq[T],
      numSlices: Int = defaultParallelism): RDD[T] = withScope {
    parallelize(seq, numSlices)
  }

  /** Distribute a local Scala collection to form an RDD, with one or more
    * location preferences (hostnames of Spark nodes) for each object.
    * Create a new partition for each collection item. */
  def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
    assertNotStopped()
    val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
    new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs)
  }

  /**
   * Read a text file from HDFS, a local file system (available on all nodes), or any
   * Hadoop-supported file system URI, and return it as an RDD of Strings.
   */
  def textFile(
      path: String,
      minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
    assertNotStopped()
    hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
      minPartitions).map(pair => pair._2.toString).setName(path)
  }

  /**
   * Read a directory of text files from HDFS, a local file system (available on all nodes), or any
   * Hadoop-supported file system URI. Each file is read as a single record and returned in a
   * key-value pair, where the key is the path of each file, the value is the content of each file.
   *
   * <p> For example, if you have the following files:
   * {{{
   *   hdfs://a-hdfs-path/part-00000
   *   hdfs://a-hdfs-path/part-00001
   *   ...
   *   hdfs://a-hdfs-path/part-nnnnn
   * }}}
   *
   * Do `val rdd = sparkContext.wholeTextFile("hdfs://a-hdfs-path")`,
   *
   * <p> then `rdd` contains
   * {{{
   *   (a-hdfs-path/part-00000, its content)
   *   (a-hdfs-path/part-00001, its content)
   *   ...
   *   (a-hdfs-path/part-nnnnn, its content)
   * }}}
   *
   * @note Small files are preferred, large file is also allowable, but may cause bad performance.
   * @note On some filesystems, `.../path/&#42;` can be a more efficient way to read all files
   *       in a directory rather than `.../path/` or `.../path`
   *
   * @param path Directory to the input data files, the path can be comma separated paths as the
   *             list of inputs.
   * @param minPartitions A suggestion value of the minimal splitting number for input data.
   */
  def wholeTextFiles(
      path: String,
      minPartitions: Int = defaultMinPartitions): RDD[(String, String)] = withScope {
    assertNotStopped()
    val job = NewHadoopJob.getInstance(hadoopConfiguration)
    // Use setInputPaths so that wholeTextFiles aligns with hadoopFile/textFile in taking
    // comma separated files as input. (see SPARK-7155)
    NewFileInputFormat.setInputPaths(job, path)
    val updateConf = job.getConfiguration
    new WholeTextFileRDD(
      this,
      classOf[WholeTextFileInputFormat],
      classOf[Text],
      classOf[Text],
      updateConf,
      minPartitions).map(record => (record._1.toString, record._2.toString)).setName(path)
  }

  /**
   * Get an RDD for a Hadoop-readable dataset as PortableDataStream for each file
   * (useful for binary data)
   *
   * For example, if you have the following files:
   * {{{
   *   hdfs://a-hdfs-path/part-00000
   *   hdfs://a-hdfs-path/part-00001
   *   ...
   *   hdfs://a-hdfs-path/part-nnnnn
   * }}}
   *
   * Do
   * `val rdd = sparkContext.binaryFiles("hdfs://a-hdfs-path")`,
   *
   * then `rdd` contains
   * {{{
   *   (a-hdfs-path/part-00000, its content)
   *   (a-hdfs-path/part-00001, its content)
   *   ...
   *   (a-hdfs-path/part-nnnnn, its content)
   * }}}
   *
   * @note Small files are preferred; very large files may cause bad performance.
   * @note On some filesystems, `.../path/&#42;` can be a more efficient way to read all files
   *       in a directory rather than `.../path/` or `.../path`
   *
   * @param path Directory to the input data files, the path can be comma separated paths as the
   *             list of inputs.
   * @param minPartitions A suggestion value of the minimal splitting number for input data.
   */
  def binaryFiles(
      path: String,
      minPartitions: Int = defaultMinPartitions): RDD[(String, PortableDataStream)] = withScope {
    assertNotStopped()
    val job = NewHadoopJob.getInstance(hadoopConfiguration)
    // Use setInputPaths so that binaryFiles aligns with hadoopFile/textFile in taking
    // comma separated files as input. (see SPARK-7155)
    NewFileInputFormat.setInputPaths(job, path)
    val updateConf = job.getConfiguration
    new BinaryFileRDD(
      this,
      classOf[StreamInputFormat],
      classOf[String],
      classOf[PortableDataStream],
      updateConf,
      minPartitions).setName(path)
  }

  /**
   * Load data from a flat binary file, assuming the length of each record is constant.
   *
   * '''Note:''' We ensure that the byte array for each record in the resulting RDD
   * has the provided record length.
   *
   * @param path Directory to the input data files, the path can be comma separated paths as the
   *             list of inputs.
   * @param recordLength The length at which to split the records
   * @param conf Configuration for setting up the dataset.
   *
   * @return An RDD of data with values, represented as byte arrays
   */
  def binaryRecords(
      path: String,
      recordLength: Int,
      conf: Configuration = hadoopConfiguration): RDD[Array[Byte]] = withScope {
    assertNotStopped()
    conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength)
    val br = newAPIHadoopFile[LongWritable, BytesWritable, FixedLengthBinaryInputFormat](path,
      classOf[FixedLengthBinaryInputFormat],
      classOf[LongWritable],
      classOf[BytesWritable],
      conf = conf)
    val data = br.map { case (k, v) =>
      val bytes = v.getBytes
      assert(bytes.length == recordLength, "Byte array does not have correct length")
      bytes
    }
    data
  }

  /**
   * Get an RDD for a Hadoop-readable dataset from a Hadoop JobConf given its InputFormat and other
   * necessary info (e.g. file name for a filesystem-based dataset, table name for HyperTable),
   * using the older MapReduce API (`org.apache.hadoop.mapred`).
   *
   * @param conf JobConf for setting up the dataset. Note: This will be put into a Broadcast.
   *             Therefore if you plan to reuse this conf to create multiple RDDs, you need to make
   *             sure you won't modify the conf. A safe approach is always creating a new conf for
   *             a new RDD.
   * @param inputFormatClass Class of the InputFormat
   * @param keyClass Class of the keys
   * @param valueClass Class of the values
   * @param minPartitions Minimum number of Hadoop Splits to generate.
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def hadoopRDD[K, V](
      conf: JobConf,
      inputFormatClass: Class[_ <: InputFormat[K, V]],
      keyClass: Class[K],
      valueClass: Class[V],
      minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {
    assertNotStopped()
    // Add necessary security credentials to the JobConf before broadcasting it.
    SparkHadoopUtil.get.addCredentials(conf)
    new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minPartitions)
  }

  /** Get an RDD for a Hadoop file with an arbitrary InputFormat
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def hadoopFile[K, V](
      path: String,
      inputFormatClass: Class[_ <: InputFormat[K, V]],
      keyClass: Class[K],
      valueClass: Class[V],
      minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {
    assertNotStopped()
    // A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it.
    val confBroadcast = broadcast(new SerializableConfiguration(hadoopConfiguration))
    val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)
    new HadoopRDD(
      this,
      confBroadcast,
      Some(setInputPathsFunc),
      inputFormatClass,
      keyClass,
      valueClass,
      minPartitions).setName(path)
  }

  /**
   * Smarter version of hadoopFile() that uses class tags to figure out the classes of keys,
   * values and the InputFormat so that users don't need to pass them directly. Instead, callers
   * can just write, for example,
   * {{{
   * val file = sparkContext.hadoopFile[LongWritable, Text, TextInputFormat](path, minPartitions)
   * }}}
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def hadoopFile[K, V, F <: InputFormat[K, V]]
      (path: String, minPartitions: Int)
      (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
    hadoopFile(path,
      fm.runtimeClass.asInstanceOf[Class[F]],
      km.runtimeClass.asInstanceOf[Class[K]],
      vm.runtimeClass.asInstanceOf[Class[V]],
      minPartitions)
  }

  /**
   * Smarter version of hadoopFile() that uses class tags to figure out the classes of keys,
   * values and the InputFormat so that users don't need to pass them directly. Instead, callers
   * can just write, for example,
   * {{{
   * val file = sparkContext.hadoopFile[LongWritable, Text, TextInputFormat](path)
   * }}}
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def hadoopFile[K, V, F <: InputFormat[K, V]](path: String)
      (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
    hadoopFile[K, V, F](path, defaultMinPartitions)
  }

  /** Get an RDD for a Hadoop file with an arbitrary new API InputFormat. */
  def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]]
      (path: String)
      (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
    newAPIHadoopFile(
      path,
      fm.runtimeClass.asInstanceOf[Class[F]],
      km.runtimeClass.asInstanceOf[Class[K]],
      vm.runtimeClass.asInstanceOf[Class[V]])
  }

  /**
   * Get an RDD for a given Hadoop file with an arbitrary new API InputFormat
   * and extra configuration options to pass to the input format.
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](
      path: String,
      fClass: Class[F],
      kClass: Class[K],
      vClass: Class[V],
      conf: Configuration = hadoopConfiguration): RDD[(K, V)] = withScope {
    assertNotStopped()
    // The call to NewHadoopJob automatically adds security credentials to conf,
    // so we don't need to explicitly add them ourselves
    val job = NewHadoopJob.getInstance(conf)
    // Use setInputPaths so that newAPIHadoopFile aligns with hadoopFile/textFile in taking
    // comma separated files as input. (see SPARK-7155)
    NewFileInputFormat.setInputPaths(job, path)
    val updatedConf = job.getConfiguration
    new NewHadoopRDD(this, fClass, kClass, vClass, updatedConf).setName(path)
  }

  /**
   * Get an RDD for a given Hadoop file with an arbitrary new API InputFormat
   * and extra configuration options to pass to the input format.
   *
   * @param conf Configuration for setting up the dataset. Note: This will be put into a Broadcast.
   *             Therefore if you plan to reuse this conf to create multiple RDDs, you need to make
   *             sure you won't modify the conf. A safe approach is always creating a new conf for
   *             a new RDD.
   * @param fClass Class of the InputFormat
   * @param kClass Class of the keys
   * @param vClass Class of the values
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
  def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]](
      conf: Configuration = hadoopConfiguration,
      fClass: Class[F],
      kClass: Class[K],
      vClass: Class[V]): RDD[(K, V)] = withScope {
    assertNotStopped()
    // Add necessary security credentials to the JobConf. Required to access secure HDFS.
    val jconf = new JobConf(conf)
    SparkHadoopUtil.get.addCredentials(jconf)
    new NewHadoopRDD(this, fClass, kClass, vClass, jconf)
  }

  /** Get an RDD for a Hadoop SequenceFile with given key and value types.
    *
    * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
    * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
    * operation will create many references to the same object.
    * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
    * copy them using a `map` function.
    */
  def sequenceFile[K, V](path: String,
      keyClass: Class[K],
      valueClass: Class[V],
      minPartitions: Int
      ): RDD[(K, V)] = withScope {
    assertNotStopped()
    val inputFormatClass = classOf[SequenceFileInputFormat[K, V]]
    hadoopFile(path, inputFormatClass, keyClass, valueClass, minPartitions)
  }

  /** Get an RDD for a Hadoop SequenceFile with given key and value types.
    *
    * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
    * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
    * operation will create many references to the same object.
    * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
    * copy them using a `map` function.
    * */
  def sequenceFile[K, V](
      path: String,
      keyClass: Class[K],
      valueClass: Class[V]): RDD[(K, V)] = withScope {
    assertNotStopped()
    sequenceFile(path, keyClass, valueClass, defaultMinPartitions)
  }

  /**
   * Version of sequenceFile() for types implicitly convertible to Writables through a
   * WritableConverter. For example, to access a SequenceFile where the keys are Text and the
   * values are IntWritable, you could simply write
   * {{{
   * sparkContext.sequenceFile[String, Int](path, ...)
   * }}}
   *
   * WritableConverters are provided in a somewhat strange way (by an implicit function) to support
   * both subclasses of Writable and types for which we define a converter (e.g. Int to
   * IntWritable). The most natural thing would've been to have implicit objects for the
   * converters, but then we couldn't have an object for every subclass of Writable (you can't
   * have a parameterized singleton object). We use functions instead to create a new converter
   * for the appropriate type. In addition, we pass the converter a ClassTag of its type to
   * allow it to figure out the Writable class to use in the subclass case.
   *
   * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
   * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
   * operation will create many references to the same object.
   * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
   * copy them using a `map` function.
   */
   def sequenceFile[K, V]
       (path: String, minPartitions: Int = defaultMinPartitions)
       (implicit km: ClassTag[K], vm: ClassTag[V],
        kcf: () => WritableConverter[K], vcf: () => WritableConverter[V]): RDD[(K, V)] = {
    withScope {
      assertNotStopped()
      val kc = clean(kcf)()
      val vc = clean(vcf)()
      val format = classOf[SequenceFileInputFormat[Writable, Writable]]
      val writables = hadoopFile(path, format,
        kc.writableClass(km).asInstanceOf[Class[Writable]],
        vc.writableClass(vm).asInstanceOf[Class[Writable]], minPartitions)
      writables.map { case (k, v) => (kc.convert(k), vc.convert(v)) }
    }
  }

  /**
   * Load an RDD saved as a SequenceFile containing serialized objects, with NullWritable keys and
   * BytesWritable values that contain a serialized partition. This is still an experimental
   * storage format and may not be supported exactly as is in future Spark releases. It will also
   * be pretty slow if you use the default serializer (Java serialization),
   * though the nice thing about it is that there's very little effort required to save arbitrary
   * objects.
   */
  def objectFile[T: ClassTag](
      path: String,
      minPartitions: Int = defaultMinPartitions): RDD[T] = withScope {
    assertNotStopped()
    sequenceFile(path, classOf[NullWritable], classOf[BytesWritable], minPartitions)
      .flatMap(x => Utils.deserialize[Array[T]](x._2.getBytes, Utils.getContextOrSparkClassLoader))
  }

  protected[spark] def checkpointFile[T: ClassTag](path: String): RDD[T] = withScope {
    new ReliableCheckpointRDD[T](this, path)
  }

  /** Build the union of a list of RDDs. */
  def union[T: ClassTag](rdds: Seq[RDD[T]]): RDD[T] = withScope {
    val partitioners = rdds.flatMap(_.partitioner).toSet
    if (rdds.forall(_.partitioner.isDefined) && partitioners.size == 1) {
      new PartitionerAwareUnionRDD(this, rdds)
    } else {
      new UnionRDD(this, rdds)
    }
  }

  /** Build the union of a list of RDDs passed as variable-length arguments. */
  def union[T: ClassTag](first: RDD[T], rest: RDD[T]*): RDD[T] = withScope {
    union(Seq(first) ++ rest)
  }

  /** Get an RDD that has no partitions or elements. */
  def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)

  // Methods for creating shared variables

  /**
   * Create an [[org.apache.spark.Accumulator]] variable of a given type, which tasks can "add"
   * values to using the `+=` method. Only the driver can access the accumulator's `value`.
   */
  def accumulator[T](initialValue: T)(implicit param: AccumulatorParam[T]): Accumulator[T] =
  {
    val acc = new Accumulator(initialValue, param)
    cleaner.foreach(_.registerAccumulatorForCleanup(acc))
    acc
  }

  /**
   * Create an [[org.apache.spark.Accumulator]] variable of a given type, with a name for display
   * in the Spark UI. Tasks can "add" values to the accumulator using the `+=` method. Only the
   * driver can access the accumulator's `value`.
   */
  def accumulator[T](initialValue: T, name: String)(implicit param: AccumulatorParam[T])
    : Accumulator[T] = {
    val acc = new Accumulator(initialValue, param, Some(name))
    cleaner.foreach(_.registerAccumulatorForCleanup(acc))
    acc
  }

  /**
   * Create an [[org.apache.spark.Accumulable]] shared variable, to which tasks can add values
   * with `+=`. Only the driver can access the accumuable's `value`.
   * @tparam R accumulator result type
   * @tparam T type that can be added to the accumulator
   */
  def accumulable[R, T](initialValue: R)(implicit param: AccumulableParam[R, T])
    : Accumulable[R, T] = {
    val acc = new Accumulable(initialValue, param)
    cleaner.foreach(_.registerAccumulatorForCleanup(acc))
    acc
  }

  /**
   * Create an [[org.apache.spark.Accumulable]] shared variable, with a name for display in the
   * Spark UI. Tasks can add values to the accumuable using the `+=` operator. Only the driver can
   * access the accumuable's `value`.
   * @tparam R accumulator result type
   * @tparam T type that can be added to the accumulator
   */
  def accumulable[R, T](initialValue: R, name: String)(implicit param: AccumulableParam[R, T])
    : Accumulable[R, T] = {
    val acc = new Accumulable(initialValue, param, Some(name))
    cleaner.foreach(_.registerAccumulatorForCleanup(acc))
    acc
  }

  /**
   * Create an accumulator from a "mutable collection" type.
   *
   * Growable and TraversableOnce are the standard APIs that guarantee += and ++=, implemented by
   * standard mutable collections. So you can use this with mutable Map, Set, etc.
   */
  def accumulableCollection[R <% Growable[T] with TraversableOnce[T] with Serializable: ClassTag, T]
      (initialValue: R): Accumulable[R, T] = {
    val param = new GrowableAccumulableParam[R, T]
    val acc = new Accumulable(initialValue, param)
    cleaner.foreach(_.registerAccumulatorForCleanup(acc))
    acc
  }

  /**
   * Broadcast a read-only variable to the cluster, returning a
   * [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
   * The variable will be sent to each cluster only once.
   */
  def broadcast[T: ClassTag](value: T): Broadcast[T] = {
    assertNotStopped()
    require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
      "Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
    val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
    val callSite = getCallSite
    logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
    cleaner.foreach(_.registerBroadcastForCleanup(bc))
    bc
  }

  /**
   * Add a file to be downloaded with this Spark job on every node.
   * The `path` passed can be either a local file, a file in HDFS (or other Hadoop-supported
   * filesystems), or an HTTP, HTTPS or FTP URI.  To access the file in Spark jobs,
   * use `SparkFiles.get(fileName)` to find its download location.
   */
  def addFile(path: String): Unit = {
    addFile(path, false)
  }

  /**
   * Add a file to be downloaded with this Spark job on every node.
   * The `path` passed can be either a local file, a file in HDFS (or other Hadoop-supported
   * filesystems), or an HTTP, HTTPS or FTP URI.  To access the file in Spark jobs,
   * use `SparkFiles.get(fileName)` to find its download location.
   *
   * A directory can be given if the recursive option is set to true. Currently directories are only
   * supported for Hadoop-supported filesystems.
   */
  def addFile(path: String, recursive: Boolean): Unit = {
    val uri = new URI(path)
    val schemeCorrectedPath = uri.getScheme match {
      case null | "local" => new File(path).getCanonicalFile.toURI.toString
      case _ => path
    }

    val hadoopPath = new Path(schemeCorrectedPath)
    val scheme = new URI(schemeCorrectedPath).getScheme
    if (!Array("http", "https", "ftp").contains(scheme)) {
      val fs = hadoopPath.getFileSystem(hadoopConfiguration)
      if (!fs.exists(hadoopPath)) {
        throw new FileNotFoundException(s"Added file $hadoopPath does not exist.")
      }
      val isDir = fs.getFileStatus(hadoopPath).isDirectory
      if (!isLocal && scheme == "file" && isDir) {
        throw new SparkException(s"addFile does not support local directories when not running " +
          "local mode.")
      }
      if (!recursive && isDir) {
        throw new SparkException(s"Added file $hadoopPath is a directory and recursive is not " +
          "turned on.")
      }
    }

    val key = if (!isLocal && scheme == "file") {
      env.rpcEnv.fileServer.addFile(new File(uri.getPath))
    } else {
      schemeCorrectedPath
    }
    val timestamp = System.currentTimeMillis
    addedFiles(key) = timestamp

    // Fetch the file locally in case a job is executed using DAGScheduler.runLocally().
    Utils.fetchFile(path, new File(SparkFiles.getRootDirectory()), conf, env.securityManager,
      hadoopConfiguration, timestamp, useCache = false)

    logInfo("Added file " + path + " at " + key + " with timestamp " + addedFiles(key))
    postEnvironmentUpdate()
  }

  /**
   * :: DeveloperApi ::
   * Register a listener to receive up-calls from events that happen during execution.
   */
  @DeveloperApi
  def addSparkListener(listener: SparkListener) {
    listenerBus.addListener(listener)
  }

  /**
   * Update the cluster manager on our scheduling needs. Three bits of information are included
   * to help it make decisions.
   * @param numExecutors The total number of executors we'd like to have. The cluster manager
   *                     shouldn't kill any running executor to reach this number, but,
   *                     if all existing executors were to die, this is the number of executors
   *                     we'd want to be allocated.
   * @param localityAwareTasks The number of tasks in all active stages that have a locality
   *                           preferences. This includes running, pending, and completed tasks.
   * @param hostToLocalTaskCount A map of hosts to the number of tasks from all active stages
   *                             that would like to like to run on that host.
   *                             This includes running, pending, and completed tasks.
   * @return whether the request is acknowledged by the cluster manager.
   */
  private[spark] override def requestTotalExecutors(
      numExecutors: Int,
      localityAwareTasks: Int,
      hostToLocalTaskCount: scala.collection.immutable.Map[String, Int]
    ): Boolean = {
    schedulerBackend match {
      case b: CoarseGrainedSchedulerBackend =>
        b.requestTotalExecutors(numExecutors, localityAwareTasks, hostToLocalTaskCount)
      case _ =>
        logWarning("Requesting executors is only supported in coarse-grained mode")
        false
    }
  }

  /**
   * :: DeveloperApi ::
   * Request an additional number of executors from the cluster manager.
   * @return whether the request is received.
   */
  @DeveloperApi
  override def requestExecutors(numAdditionalExecutors: Int): Boolean = {
    schedulerBackend match {
      case b: CoarseGrainedSchedulerBackend =>
        b.requestExecutors(numAdditionalExecutors)
      case _ =>
        logWarning("Requesting executors is only supported in coarse-grained mode")
        false
    }
  }

  /**
   * :: DeveloperApi ::
   * Request that the cluster manager kill the specified executors.
   *
   * Note: This is an indication to the cluster manager that the application wishes to adjust
   * its resource usage downwards. If the application wishes to replace the executors it kills
   * through this method with new ones, it should follow up explicitly with a call to
   * {{SparkContext#requestExecutors}}.
   *
   * @return whether the request is received.
   */
  @DeveloperApi
  override def killExecutors(executorIds: Seq[String]): Boolean = {
    schedulerBackend match {
      case b: CoarseGrainedSchedulerBackend =>
        b.killExecutors(executorIds, replace = false, force = true)
      case _ =>
        logWarning("Killing executors is only supported in coarse-grained mode")
        false
    }
  }

  /**
   * :: DeveloperApi ::
   * Request that the cluster manager kill the specified executor.
   *
   * Note: This is an indication to the cluster manager that the application wishes to adjust
   * its resource usage downwards. If the application wishes to replace the executor it kills
   * through this method with a new one, it should follow up explicitly with a call to
   * {{SparkContext#requestExecutors}}.
   *
   * @return whether the request is received.
   */
  @DeveloperApi
  override def killExecutor(executorId: String): Boolean = super.killExecutor(executorId)

  /**
   * Request that the cluster manager kill the specified executor without adjusting the
   * application resource requirements.
   *
   * The effect is that a new executor will be launched in place of the one killed by
   * this request. This assumes the cluster manager will automatically and eventually
   * fulfill all missing application resource requests.
   *
   * Note: The replace is by no means guaranteed; another application on the same cluster
   * can steal the window of opportunity and acquire this application's resources in the
   * mean time.
   *
   * @return whether the request is received.
   */
  private[spark] def killAndReplaceExecutor(executorId: String): Boolean = {
    schedulerBackend match {
      case b: CoarseGrainedSchedulerBackend =>
        b.killExecutors(Seq(executorId), replace = true, force = true)
      case _ =>
        logWarning("Killing executors is only supported in coarse-grained mode")
        false
    }
  }

  /** The version of Spark on which this application is running. */
  def version: String = SPARK_VERSION

  /**
   * Return a map from the slave to the max memory available for caching and the remaining
   * memory available for caching.
   */
  def getExecutorMemoryStatus: Map[String, (Long, Long)] = {
    assertNotStopped()
    env.blockManager.master.getMemoryStatus.map { case(blockManagerId, mem) =>
      (blockManagerId.host + ":" + blockManagerId.port, mem)
    }
  }

  /**
   * :: DeveloperApi ::
   * Return information about what RDDs are cached, if they are in mem or on disk, how much space
   * they take, etc.
   */
  @DeveloperApi
  def getRDDStorageInfo: Array[RDDInfo] = {
    getRDDStorageInfo(_ => true)
  }

  private[spark] def getRDDStorageInfo(filter: RDD[_] => Boolean): Array[RDDInfo] = {
    assertNotStopped()
    val rddInfos = persistentRdds.values.filter(filter).map(RDDInfo.fromRdd).toArray
    StorageUtils.updateRddInfo(rddInfos, getExecutorStorageStatus)
    rddInfos.filter(_.isCached)
  }

  /**
   * Returns an immutable map of RDDs that have marked themselves as persistent via cache() call.
   * Note that this does not necessarily mean the caching or computation was successful.
   */
  def getPersistentRDDs: Map[Int, RDD[_]] = persistentRdds.toMap

  /**
   * :: DeveloperApi ::
   * Return information about blocks stored in all of the slaves
   */
  @DeveloperApi
  def getExecutorStorageStatus: Array[StorageStatus] = {
    assertNotStopped()
    env.blockManager.master.getStorageStatus
  }

  /**
   * :: DeveloperApi ::
   * Return pools for fair scheduler
   */
  @DeveloperApi
  def getAllPools: Seq[Schedulable] = {
    assertNotStopped()
    // TODO(xiajunluan): We should take nested pools into account
    taskScheduler.rootPool.schedulableQueue.asScala.toSeq
  }

  /**
   * :: DeveloperApi ::
   * Return the pool associated with the given name, if one exists
   */
  @DeveloperApi
  def getPoolForName(pool: String): Option[Schedulable] = {
    assertNotStopped()
    Option(taskScheduler.rootPool.schedulableNameToSchedulable.get(pool))
  }

  /**
   * Return current scheduling mode
   */
  def getSchedulingMode: SchedulingMode.SchedulingMode = {
    assertNotStopped()
    taskScheduler.schedulingMode
  }

  /**
   * Gets the locality information associated with the partition in a particular rdd
   * @param rdd of interest
   * @param partition to be looked up for locality
   * @return list of preferred locations for the partition
   */
  private [spark] def getPreferredLocs(rdd: RDD[_], partition: Int): Seq[TaskLocation] = {
    dagScheduler.getPreferredLocs(rdd, partition)
  }

  /**
   * Register an RDD to be persisted in memory and/or disk storage
   */
  private[spark] def persistRDD(rdd: RDD[_]) {
    persistentRdds(rdd.id) = rdd
  }

  /**
   * Unpersist an RDD from memory and/or disk storage
   */
  private[spark] def unpersistRDD(rddId: Int, blocking: Boolean = true) {
    env.blockManager.master.removeRdd(rddId, blocking)
    persistentRdds.remove(rddId)
    listenerBus.post(SparkListenerUnpersistRDD(rddId))
  }

  /**
   * Adds a JAR dependency for all tasks to be executed on this SparkContext in the future.
   * The `path` passed can be either a local file, a file in HDFS (or other Hadoop-supported
   * filesystems), an HTTP, HTTPS or FTP URI, or local:/path for a file on every worker node.
   */
  def addJar(path: String) {
    if (path == null) {
      logWarning("null specified as parameter to addJar")
    } else {
      var key = ""
      if (path.contains("\\")) {
        // For local paths with backslashes on Windows, URI throws an exception
        key = env.rpcEnv.fileServer.addJar(new File(path))
      } else {
        val uri = new URI(path)
        key = uri.getScheme match {
          // A JAR file which exists only on the driver node
          case null | "file" =>
            if (master == "yarn" && deployMode == "cluster") {
              // In order for this to work in yarn cluster mode the user must specify the
              // --addJars option to the client to upload the file into the distributed cache
              // of the AM to make it show up in the current working directory.
              val fileName = new Path(uri.getPath).getName()
              try {
                env.rpcEnv.fileServer.addJar(new File(fileName))
              } catch {
                case e: Exception =>
                  // For now just log an error but allow to go through so spark examples work.
                  // The spark examples don't really need the jar distributed since its also
                  // the app jar.
                  logError("Error adding jar (" + e + "), was the --addJars option used?")
                  null
              }
            } else {
              try {
                env.rpcEnv.fileServer.addJar(new File(uri.getPath))
              } catch {
                case exc: FileNotFoundException =>
                  logError(s"Jar not found at $path")
                  null
                case e: Exception =>
                  // For now just log an error but allow to go through so spark examples work.
                  // The spark examples don't really need the jar distributed since its also
                  // the app jar.
                  logError("Error adding jar (" + e + "), was the --addJars option used?")
                  null
              }
            }
          // A JAR file which exists locally on every worker node
          case "local" =>
            "file:" + uri.getPath
          case _ =>
            path
        }
      }
      if (key != null) {
        addedJars(key) = System.currentTimeMillis
        logInfo("Added JAR " + path + " at " + key + " with timestamp " + addedJars(key))
      }
    }
    postEnvironmentUpdate()
  }

  // Shut down the SparkContext.
  def stop() {
    if (LiveListenerBus.withinListenerThread.value) {
      throw new SparkException(
        s"Cannot stop SparkContext within listener thread of ${LiveListenerBus.name}")
    }
    // Use the stopping variable to ensure no contention for the stop scenario.
    // Still track the stopped variable for use elsewhere in the code.
    if (!stopped.compareAndSet(false, true)) {
      logInfo("SparkContext already stopped.")
      return
    }
    if (_shutdownHookRef != null) {
      ShutdownHookManager.removeShutdownHook(_shutdownHookRef)
    }

    Utils.tryLogNonFatalError {
      postApplicationEnd()
    }
    Utils.tryLogNonFatalError {
      _ui.foreach(_.stop())
    }
    if (env != null) {
      Utils.tryLogNonFatalError {
        env.metricsSystem.report()
      }
    }
    Utils.tryLogNonFatalError {
      _cleaner.foreach(_.stop())
    }
    Utils.tryLogNonFatalError {
      _executorAllocationManager.foreach(_.stop())
    }
    if (_listenerBusStarted) {
      Utils.tryLogNonFatalError {
        listenerBus.stop()
        _listenerBusStarted = false
      }
    }
    Utils.tryLogNonFatalError {
      _eventLogger.foreach(_.stop())
    }
    if (_dagScheduler != null) {
      Utils.tryLogNonFatalError {
        _dagScheduler.stop()
      }
      _dagScheduler = null
    }
    if (env != null && _heartbeatReceiver != null) {
      Utils.tryLogNonFatalError {
        env.rpcEnv.stop(_heartbeatReceiver)
      }
    }
    Utils.tryLogNonFatalError {
      _progressBar.foreach(_.stop())
    }
    _taskScheduler = null
    // TODO: Cache.stop()?
    if (_env != null) {
      Utils.tryLogNonFatalError {
        _env.stop()
      }
      SparkEnv.set(null)
    }
    // Unset YARN mode system env variable, to allow switching between cluster types.
    System.clearProperty("SPARK_YARN_MODE")
    SparkContext.clearActiveContext()
    logInfo("Successfully stopped SparkContext")
  }


  /**
   * Get Spark's home location from either a value set through the constructor,
   * or the spark.home Java property, or the SPARK_HOME environment variable
   * (in that order of preference). If neither of these is set, return None.
   */
  private[spark] def getSparkHome(): Option[String] = {
    conf.getOption("spark.home").orElse(Option(System.getenv("SPARK_HOME")))
  }

  /**
   * Set the thread-local property for overriding the call sites
   * of actions and RDDs.
   */
  def setCallSite(shortCallSite: String) {
    setLocalProperty(CallSite.SHORT_FORM, shortCallSite)
  }

  /**
   * Set the thread-local property for overriding the call sites
   * of actions and RDDs.
   */
  private[spark] def setCallSite(callSite: CallSite) {
    setLocalProperty(CallSite.SHORT_FORM, callSite.shortForm)
    setLocalProperty(CallSite.LONG_FORM, callSite.longForm)
  }

  /**
   * Clear the thread-local property for overriding the call sites
   * of actions and RDDs.
   */
  def clearCallSite() {
    setLocalProperty(CallSite.SHORT_FORM, null)
    setLocalProperty(CallSite.LONG_FORM, null)
  }

  /**
   * Capture the current user callsite and return a formatted version for printing. If the user
   * has overridden the call site using `setCallSite()`, this will return the user's version.
   */
  private[spark] def getCallSite(): CallSite = {
    val callSite = Utils.getCallSite()
    CallSite(
      Option(getLocalProperty(CallSite.SHORT_FORM)).getOrElse(callSite.shortForm),
      Option(getLocalProperty(CallSite.LONG_FORM)).getOrElse(callSite.longForm)
    )
  }

  /**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

  /**
   * Run a function on a given set of partitions in an RDD and return the results as an array.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int]): Array[U] = {
    val results = new Array[U](partitions.size)
    runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
    results
  }

  /**
   * Run a job on a given set of partitions of an RDD, but take a function of type
   * `Iterator[T] => U` instead of `(TaskContext, Iterator[T]) => U`.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: Iterator[T] => U,
      partitions: Seq[Int]): Array[U] = {
    val cleanedFunc = clean(func)
    runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
  }

  /**
   * Run a job on all partitions in an RDD and return the results in an array.
   */
  def runJob[T, U: ClassTag](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = {
    runJob(rdd, func, 0 until rdd.partitions.length)
  }

  /**
   * Run a job on all partitions in an RDD and return the results in an array.
   */
  def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
    runJob(rdd, func, 0 until rdd.partitions.length)
  }

  /**
   * Run a job on all partitions in an RDD and pass the results to a handler function.
   */
  def runJob[T, U: ClassTag](
    rdd: RDD[T],
    processPartition: (TaskContext, Iterator[T]) => U,
    resultHandler: (Int, U) => Unit)
  {
    runJob[T, U](rdd, processPartition, 0 until rdd.partitions.length, resultHandler)
  }

  /**
   * Run a job on all partitions in an RDD and pass the results to a handler function.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      processPartition: Iterator[T] => U,
      resultHandler: (Int, U) => Unit)
  {
    val processFunc = (context: TaskContext, iter: Iterator[T]) => processPartition(iter)
    runJob[T, U](rdd, processFunc, 0 until rdd.partitions.length, resultHandler)
  }

  /**
   * :: DeveloperApi ::
   * Run a job that can return approximate results.
   */
  @DeveloperApi
  def runApproximateJob[T, U, R](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      evaluator: ApproximateEvaluator[U, R],
      timeout: Long): PartialResult[R] = {
    assertNotStopped()
    val callSite = getCallSite
    logInfo("Starting job: " + callSite.shortForm)
    val start = System.nanoTime
    val cleanedFunc = clean(func)
    val result = dagScheduler.runApproximateJob(rdd, cleanedFunc, evaluator, callSite, timeout,
      localProperties.get)
    logInfo(
      "Job finished: " + callSite.shortForm + ", took " + (System.nanoTime - start) / 1e9 + " s")
    result
  }

  /**
   * Submit a job for execution and return a FutureJob holding the result.
   */
  def submitJob[T, U, R](
      rdd: RDD[T],
      processPartition: Iterator[T] => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit,
      resultFunc: => R): SimpleFutureAction[R] =
  {
    assertNotStopped()
    val cleanF = clean(processPartition)
    val callSite = getCallSite
    val waiter = dagScheduler.submitJob(
      rdd,
      (context: TaskContext, iter: Iterator[T]) => cleanF(iter),
      partitions,
      callSite,
      resultHandler,
      localProperties.get)
    new SimpleFutureAction(waiter, resultFunc)
  }

  /**
   * Submit a map stage for execution. This is currently an internal API only, but might be
   * promoted to DeveloperApi in the future.
   */
  private[spark] def submitMapStage[K, V, C](dependency: ShuffleDependency[K, V, C])
      : SimpleFutureAction[MapOutputStatistics] = {
    assertNotStopped()
    val callSite = getCallSite()
    var result: MapOutputStatistics = null
    val waiter = dagScheduler.submitMapStage(
      dependency,
      (r: MapOutputStatistics) => { result = r },
      callSite,
      localProperties.get)
    new SimpleFutureAction[MapOutputStatistics](waiter, result)
  }

  /**
   * Cancel active jobs for the specified group. See [[org.apache.spark.SparkContext.setJobGroup]]
   * for more information.
   */
  def cancelJobGroup(groupId: String) {
    assertNotStopped()
    dagScheduler.cancelJobGroup(groupId)
  }

  /** Cancel all jobs that have been scheduled or are running.  */
  def cancelAllJobs() {
    assertNotStopped()
    dagScheduler.cancelAllJobs()
  }

  /** Cancel a given job if it's scheduled or running */
  private[spark] def cancelJob(jobId: Int) {
    dagScheduler.cancelJob(jobId)
  }

  /** Cancel a given stage and all jobs associated with it */
  private[spark] def cancelStage(stageId: Int) {
    dagScheduler.cancelStage(stageId)
  }

  /**
   * Clean a closure to make it ready to serialized and send to tasks
   * (removes unreferenced variables in $outer's, updates REPL variables)
   * If <tt>checkSerializable</tt> is set, <tt>clean</tt> will also proactively
   * check to see if <tt>f</tt> is serializable and throw a <tt>SparkException</tt>
   * if not.
   *
   * @param f the closure to clean
   * @param checkSerializable whether or not to immediately check <tt>f</tt> for serializability
   * @throws SparkException if <tt>checkSerializable</tt> is set but <tt>f</tt> is not
   *   serializable
   */
  private[spark] def clean[F <: AnyRef](f: F, checkSerializable: Boolean = true): F = {
    ClosureCleaner.clean(f, checkSerializable)
    f
  }

  /**
   * Set the directory under which RDDs are going to be checkpointed. The directory must
   * be a HDFS path if running on a cluster.
   */
  def setCheckpointDir(directory: String) {

    // If we are running on a cluster, log a warning if the directory is local.
    // Otherwise, the driver may attempt to reconstruct the checkpointed RDD from
    // its own local file system, which is incorrect because the checkpoint files
    // are actually on the executor machines.
    if (!isLocal && Utils.nonLocalPaths(directory).isEmpty) {
      logWarning("Spark is not running in local mode, therefore the checkpoint directory " +
        s"must not be on the local filesystem. Directory '$directory' " +
        "appears to be on the local filesystem.")
    }

    checkpointDir = Option(directory).map { dir =>
      val path = new Path(dir, UUID.randomUUID().toString)
      val fs = path.getFileSystem(hadoopConfiguration)
      fs.mkdirs(path)
      fs.getFileStatus(path).getPath.toString
    }
  }

  def getCheckpointDir: Option[String] = checkpointDir

  /** Default level of parallelism to use when not given by user (e.g. parallelize and makeRDD). */
  def defaultParallelism: Int = {
    assertNotStopped()
    taskScheduler.defaultParallelism
  }

  /**
   * Default min number of partitions for Hadoop RDDs when not given by user
   * Notice that we use math.min so the "defaultMinPartitions" cannot be higher than 2.
   * The reasons for this are discussed in https://github.com/mesos/spark/pull/718
   */
  def defaultMinPartitions: Int = math.min(defaultParallelism, 2)

  private val nextShuffleId = new AtomicInteger(0)

  private[spark] def newShuffleId(): Int = nextShuffleId.getAndIncrement()

  private val nextRddId = new AtomicInteger(0)

  /** Register a new RDD, returning its RDD ID */
  private[spark] def newRddId(): Int = nextRddId.getAndIncrement()

  /**
   * Registers listeners specified in spark.extraListeners, then starts the listener bus.
   * This should be called after all internal listeners have been registered with the listener bus
   * (e.g. after the web UI and event logging listeners have been registered).
   */
  private def setupAndStartListenerBus(): Unit = {
    // Use reflection to instantiate listeners specified via `spark.extraListeners`
    try {
      val listenerClassNames: Seq[String] =
        conf.get("spark.extraListeners", "").split(',').map(_.trim).filter(_ != "")
      for (className <- listenerClassNames) {
        // Use reflection to find the right constructor
        val constructors = {
          val listenerClass = Utils.classForName(className)
          listenerClass.getConstructors.asInstanceOf[Array[Constructor[_ <: SparkListener]]]
        }
        val constructorTakingSparkConf = constructors.find { c =>
          c.getParameterTypes.sameElements(Array(classOf[SparkConf]))
        }
        lazy val zeroArgumentConstructor = constructors.find { c =>
          c.getParameterTypes.isEmpty
        }
        val listener: SparkListener = {
          if (constructorTakingSparkConf.isDefined) {
            constructorTakingSparkConf.get.newInstance(conf)
          } else if (zeroArgumentConstructor.isDefined) {
            zeroArgumentConstructor.get.newInstance()
          } else {
            throw new SparkException(
              s"$className did not have a zero-argument constructor or a" +
                " single-argument constructor that accepts SparkConf. Note: if the class is" +
                " defined inside of another Scala class, then its constructors may accept an" +
                " implicit parameter that references the enclosing class; in this case, you must" +
                " define the listener as a top-level class in order to prevent this extra" +
                " parameter from breaking Spark's ability to find a valid constructor.")
          }
        }
        listenerBus.addListener(listener)
        logInfo(s"Registered listener $className")
      }
    } catch {
      case e: Exception =>
        try {
          stop()
        } finally {
          throw new SparkException(s"Exception when registering SparkListener", e)
        }
    }

    listenerBus.start(this)
    _listenerBusStarted = true
  }

  /** Post the application start event */
  private def postApplicationStart() {
    // Note: this code assumes that the task scheduler has been initialized and has contacted
    // the cluster manager to get an application ID (in case the cluster manager provides one).
    listenerBus.post(SparkListenerApplicationStart(appName, Some(applicationId),
      startTime, sparkUser, applicationAttemptId, schedulerBackend.getDriverLogUrls))
  }

  /** Post the application end event */
  private def postApplicationEnd() {
    listenerBus.post(SparkListenerApplicationEnd(System.currentTimeMillis))
  }

  /** Post the environment update event once the task scheduler is ready */
  private def postEnvironmentUpdate() {
    if (taskScheduler != null) {
      val schedulingMode = getSchedulingMode.toString
      val addedJarPaths = addedJars.keys.toSeq
      val addedFilePaths = addedFiles.keys.toSeq
      val environmentDetails = SparkEnv.environmentDetails(conf, schedulingMode, addedJarPaths,
        addedFilePaths)
      val environmentUpdate = SparkListenerEnvironmentUpdate(environmentDetails)
      listenerBus.post(environmentUpdate)
    }
  }

  // In order to prevent multiple SparkContexts from being active at the same time, mark this
  // context as having finished construction.
  // NOTE: this must be placed at the end of the SparkContext constructor.
  SparkContext.setActiveContext(this, allowMultipleContexts)
}

/**
 * The SparkContext object contains a number of implicit conversions and parameters for use with
 * various Spark features.
 */
object SparkContext extends Logging {

  /**
   * Lock that guards access to global variables that track SparkContext construction.
   */
  private val SPARK_CONTEXT_CONSTRUCTOR_LOCK = new Object()

  /**
   * The active, fully-constructed SparkContext.  If no SparkContext is active, then this is `null`.
   *
   * Access to this field is guarded by SPARK_CONTEXT_CONSTRUCTOR_LOCK.
   */
  private val activeContext: AtomicReference[SparkContext] =
    new AtomicReference[SparkContext](null)

  /**
   * Points to a partially-constructed SparkContext if some thread is in the SparkContext
   * constructor, or `None` if no SparkContext is being constructed.
   *
   * Access to this field is guarded by SPARK_CONTEXT_CONSTRUCTOR_LOCK
   */
  private var contextBeingConstructed: Option[SparkContext] = None

  /**
   * Called to ensure that no other SparkContext is running in this JVM.
   *
   * Throws an exception if a running context is detected and logs a warning if another thread is
   * constructing a SparkContext.  This warning is necessary because the current locking scheme
   * prevents us from reliably distinguishing between cases where another context is being
   * constructed and cases where another constructor threw an exception.
   */
  private def assertNoOtherContextIsRunning(
      sc: SparkContext,
      allowMultipleContexts: Boolean): Unit = {
    SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
      contextBeingConstructed.foreach { otherContext =>
        if (otherContext ne sc) {  // checks for reference equality
          // Since otherContext might point to a partially-constructed context, guard against
          // its creationSite field being null:
          val otherContextCreationSite =
            Option(otherContext.creationSite).map(_.longForm).getOrElse("unknown location")
          val warnMsg = "Another SparkContext is being constructed (or threw an exception in its" +
            " constructor).  This may indicate an error, since only one SparkContext may be" +
            " running in this JVM (see SPARK-2243)." +
            s" The other SparkContext was created at:\n$otherContextCreationSite"
          logWarning(warnMsg)
        }

        if (activeContext.get() != null) {
          val ctx = activeContext.get()
          val errMsg = "Only one SparkContext may be running in this JVM (see SPARK-2243)." +
            " To ignore this error, set spark.driver.allowMultipleContexts = true. " +
            s"The currently running SparkContext was created at:\n${ctx.creationSite.longForm}"
          val exception = new SparkException(errMsg)
          if (allowMultipleContexts) {
            logWarning("Multiple running SparkContexts detected in the same JVM!", exception)
          } else {
            throw exception
          }
        }
      }
    }
  }

  /**
   * This function may be used to get or instantiate a SparkContext and register it as a
   * singleton object. Because we can only have one active SparkContext per JVM,
   * this is useful when applications may wish to share a SparkContext.
   *
   * Note: This function cannot be used to create multiple SparkContext instances
   * even if multiple contexts are allowed.
   */
  def getOrCreate(config: SparkConf): SparkContext = {
    // Synchronize to ensure that multiple create requests don't trigger an exception
    // from assertNoOtherContextIsRunning within setActiveContext
    SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
      if (activeContext.get() == null) {
        setActiveContext(new SparkContext(config), allowMultipleContexts = false)
      }
      activeContext.get()
    }
  }

  /**
   * This function may be used to get or instantiate a SparkContext and register it as a
   * singleton object. Because we can only have one active SparkContext per JVM,
   * this is useful when applications may wish to share a SparkContext.
   *
   * This method allows not passing a SparkConf (useful if just retrieving).
   *
   * Note: This function cannot be used to create multiple SparkContext instances
   * even if multiple contexts are allowed.
   */
  def getOrCreate(): SparkContext = {
    getOrCreate(new SparkConf())
  }

  /**
   * Called at the beginning of the SparkContext constructor to ensure that no SparkContext is
   * running.  Throws an exception if a running context is detected and logs a warning if another
   * thread is constructing a SparkContext.  This warning is necessary because the current locking
   * scheme prevents us from reliably distinguishing between cases where another context is being
   * constructed and cases where another constructor threw an exception.
   */
  private[spark] def markPartiallyConstructed(
      sc: SparkContext,
      allowMultipleContexts: Boolean): Unit = {
    SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
      assertNoOtherContextIsRunning(sc, allowMultipleContexts)
      contextBeingConstructed = Some(sc)
    }
  }

  /**
   * Called at the end of the SparkContext constructor to ensure that no other SparkContext has
   * raced with this constructor and started.
   */
  private[spark] def setActiveContext(
      sc: SparkContext,
      allowMultipleContexts: Boolean): Unit = {
    SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
      assertNoOtherContextIsRunning(sc, allowMultipleContexts)
      contextBeingConstructed = None
      activeContext.set(sc)
    }
  }

  /**
   * Clears the active SparkContext metadata.  This is called by `SparkContext#stop()`.  It's
   * also called in unit tests to prevent a flood of warnings from test suites that don't / can't
   * properly clean up their SparkContexts.
   */
  private[spark] def clearActiveContext(): Unit = {
    SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
      activeContext.set(null)
    }
  }

  private[spark] val SPARK_JOB_DESCRIPTION = "spark.job.description"
  private[spark] val SPARK_JOB_GROUP_ID = "spark.jobGroup.id"
  private[spark] val SPARK_JOB_INTERRUPT_ON_CANCEL = "spark.job.interruptOnCancel"
  private[spark] val RDD_SCOPE_KEY = "spark.rdd.scope"
  private[spark] val RDD_SCOPE_NO_OVERRIDE_KEY = "spark.rdd.scope.noOverride"

  /**
   * Executor id for the driver.  In earlier versions of Spark, this was `<driver>`, but this was
   * changed to `driver` because the angle brackets caused escaping issues in URLs and XML (see
   * SPARK-6716 for more details).
   */
  private[spark] val DRIVER_IDENTIFIER = "driver"

  /**
   * Legacy version of DRIVER_IDENTIFIER, retained for backwards-compatibility.
   */
  private[spark] val LEGACY_DRIVER_IDENTIFIER = "<driver>"

  private implicit def arrayToArrayWritable[T <% Writable: ClassTag](arr: Traversable[T])
    : ArrayWritable = {
    def anyToWritable[U <% Writable](u: U): Writable = u

    new ArrayWritable(classTag[T].runtimeClass.asInstanceOf[Class[Writable]],
        arr.map(x => anyToWritable(x)).toArray)
  }

  /**
   * Find the JAR from which a given class was loaded, to make it easy for users to pass
   * their JARs to SparkContext.
   */
  def jarOfClass(cls: Class[_]): Option[String] = {
    val uri = cls.getResource("/" + cls.getName.replace('.', '/') + ".class")
    if (uri != null) {
      val uriStr = uri.toString
      if (uriStr.startsWith("jar:file:")) {
        // URI will be of the form "jar:file:/path/foo.jar!/package/cls.class",
        // so pull out the /path/foo.jar
        Some(uriStr.substring("jar:file:".length, uriStr.indexOf('!')))
      } else {
        None
      }
    } else {
      None
    }
  }

  /**
   * Find the JAR that contains the class of a particular object, to make it easy for users
   * to pass their JARs to SparkContext. In most cases you can call jarOfObject(this) in
   * your driver program.
   */
  def jarOfObject(obj: AnyRef): Option[String] = jarOfClass(obj.getClass)

  /**
   * Creates a modified version of a SparkConf with the parameters that can be passed separately
   * to SparkContext, to make it easier to write SparkContext's constructors. This ignores
   * parameters that are passed as the default value of null, instead of throwing an exception
   * like SparkConf would.
   */
  private[spark] def updatedConf(
      conf: SparkConf,
      master: String,
      appName: String,
      sparkHome: String = null,
      jars: Seq[String] = Nil,
      environment: Map[String, String] = Map()): SparkConf =
  {
    val res = conf.clone()
    res.setMaster(master)
    res.setAppName(appName)
    if (sparkHome != null) {
      res.setSparkHome(sparkHome)
    }
    if (jars != null && !jars.isEmpty) {
      res.setJars(jars)
    }
    res.setExecutorEnv(environment.toSeq)
    res
  }

  /**
   * The number of driver cores to use for execution in local mode, 0 otherwise.
   */
  private[spark] def numDriverCores(master: String): Int = {
    def convertToInt(threads: String): Int = {
      if (threads == "*") Runtime.getRuntime.availableProcessors() else threads.toInt
    }
    master match {
      case "local" => 1
      case SparkMasterRegex.LOCAL_N_REGEX(threads) => convertToInt(threads)
      case SparkMasterRegex.LOCAL_N_FAILURES_REGEX(threads, _) => convertToInt(threads)
      case _ => 0 // driver is not used for execution
    }
  }

  /**
   * Create a task scheduler based on a given master URL.
   * Return a 2-tuple of the scheduler backend and the task scheduler.
   */
  @tailrec
  private def createTaskScheduler(
      sc: SparkContext,
      master: String,
      deployMode: String): (SchedulerBackend, TaskScheduler) = {
    import SparkMasterRegex._

    // When running locally, don't try to re-execute tasks on failure.
    val MAX_LOCAL_TASK_FAILURES = 1

    master match {
      case "local" =>
        val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
        val backend = new LocalBackend(sc.getConf, scheduler, 1)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_N_REGEX(threads) =>
        def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
        // local[*] estimates the number of cores on the machine; local[N] uses exactly N threads.
        val threadCount = if (threads == "*") localCpuCount else threads.toInt
        if (threadCount <= 0) {
          throw new SparkException(s"Asked to run locally with $threadCount threads")
        }
        val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
        val backend = new LocalBackend(sc.getConf, scheduler, threadCount)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
        def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
        // local[*, M] means the number of cores on the computer with M failures
        // local[N, M] means exactly N threads with M failures
        val threadCount = if (threads == "*") localCpuCount else threads.toInt
        val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true)
        val backend = new LocalBackend(sc.getConf, scheduler, threadCount)
        scheduler.initialize(backend)
        (backend, scheduler)

      case SPARK_REGEX(sparkUrl) =>
        val scheduler = new TaskSchedulerImpl(sc)
        val masterUrls = sparkUrl.split(",").map("spark://" + _)
        val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
        // Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang.
        val memoryPerSlaveInt = memoryPerSlave.toInt
        if (sc.executorMemory > memoryPerSlaveInt) {
          throw new SparkException(
            "Asked to launch cluster with %d MB RAM / worker but requested %d MB/worker".format(
              memoryPerSlaveInt, sc.executorMemory))
        }

        val scheduler = new TaskSchedulerImpl(sc)
        val localCluster = new LocalSparkCluster(
          numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt, sc.conf)
        val masterUrls = localCluster.start()
        val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        backend.shutdownCallback = (backend: SparkDeploySchedulerBackend) => {
          localCluster.stop()
        }
        (backend, scheduler)

      case "yarn" if deployMode == "cluster" =>
        val scheduler = try {
          val clazz = Utils.classForName("org.apache.spark.scheduler.cluster.YarnClusterScheduler")
          val cons = clazz.getConstructor(classOf[SparkContext])
          cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl]
        } catch {
          // TODO: Enumerate the exact reasons why it can fail
          // But irrespective of it, it means we cannot proceed !
          case e: Exception => {
            throw new SparkException("YARN mode not available ?", e)
          }
        }
        val backend = try {
          val clazz =
            Utils.classForName("org.apache.spark.scheduler.cluster.YarnClusterSchedulerBackend")
          val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext])
          cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend]
        } catch {
          case e: Exception => {
            throw new SparkException("YARN mode not available ?", e)
          }
        }
        scheduler.initialize(backend)
        (backend, scheduler)

      case "yarn" if deployMode == "client" =>
        val scheduler = try {
          val clazz = Utils.classForName("org.apache.spark.scheduler.cluster.YarnScheduler")
          val cons = clazz.getConstructor(classOf[SparkContext])
          cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl]

        } catch {
          case e: Exception => {
            throw new SparkException("YARN mode not available ?", e)
          }
        }

        val backend = try {
          val clazz =
            Utils.classForName("org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend")
          val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext])
          cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend]
        } catch {
          case e: Exception => {
            throw new SparkException("YARN mode not available ?", e)
          }
        }

        scheduler.initialize(backend)
        (backend, scheduler)

      case MESOS_REGEX(mesosUrl) =>
        MesosNativeLibrary.load()
        val scheduler = new TaskSchedulerImpl(sc)
        val coarseGrained = sc.conf.getBoolean("spark.mesos.coarse", defaultValue = true)
        val backend = if (coarseGrained) {
          new CoarseMesosSchedulerBackend(scheduler, sc, mesosUrl, sc.env.securityManager)
        } else {
          new MesosSchedulerBackend(scheduler, sc, mesosUrl)
        }
        scheduler.initialize(backend)
        (backend, scheduler)

      case zkUrl if zkUrl.startsWith("zk://") =>
        logWarning("Master URL for a multi-master Mesos cluster managed by ZooKeeper should be " +
          "in the form mesos://zk://host:port. Current Master URL will stop working in Spark 2.0.")
        createTaskScheduler(sc, "mesos://" + zkUrl, deployMode)

      case _ =>
        throw new SparkException("Could not parse Master URL: '" + master + "'")
    }
  }
}

/**
 * A collection of regexes for extracting information from the master string.
 */
private object SparkMasterRegex {
  // Regular expression used for local[N] and local[*] master formats
  val LOCAL_N_REGEX = """local\[([0-9]+|\*)\]""".r
  // Regular expression for local[N, maxRetries], used in tests with failing tasks
  val LOCAL_N_FAILURES_REGEX = """local\[([0-9]+|\*)\s*,\s*([0-9]+)\]""".r
  // Regular expression for simulating a Spark cluster of [N, cores, memory] locally
  val LOCAL_CLUSTER_REGEX = """local-cluster\[\s*([0-9]+)\s*,\s*([0-9]+)\s*,\s*([0-9]+)\s*]""".r
  // Regular expression for connecting to Spark deploy clusters
  val SPARK_REGEX = """spark://(.*)""".r
  // Regular expression for connection to Mesos cluster by mesos:// or mesos://zk:// url
  val MESOS_REGEX = """mesos://(.*)""".r
}

/**
 * A class encapsulating how to convert some type T to Writable. It stores both the Writable class
 * corresponding to T (e.g. IntWritable for Int) and a function for doing the conversion.
 * The getter for the writable class takes a ClassTag[T] in case this is a generic object
 * that doesn't know the type of T when it is created. This sounds strange but is necessary to
 * support converting subclasses of Writable to themselves (writableWritableConverter).
 */
private[spark] class WritableConverter[T](
    val writableClass: ClassTag[T] => Class[_ <: Writable],
    val convert: Writable => T)
  extends Serializable

object WritableConverter {

  // Helper objects for converting common types to Writable
  private[spark] def simpleWritableConverter[T, W <: Writable: ClassTag](convert: W => T)
  : WritableConverter[T] = {
    val wClass = classTag[W].runtimeClass.asInstanceOf[Class[W]]
    new WritableConverter[T](_ => wClass, x => convert(x.asInstanceOf[W]))
  }

  // The following implicit functions were in SparkContext before 1.3 and users had to
  // `import SparkContext._` to enable them. Now we move them here to make the compiler find
  // them automatically. However, we still keep the old functions in SparkContext for backward
  // compatibility and forward to the following functions directly.

  implicit def intWritableConverter(): WritableConverter[Int] =
    simpleWritableConverter[Int, IntWritable](_.get)

  implicit def longWritableConverter(): WritableConverter[Long] =
    simpleWritableConverter[Long, LongWritable](_.get)

  implicit def doubleWritableConverter(): WritableConverter[Double] =
    simpleWritableConverter[Double, DoubleWritable](_.get)

  implicit def floatWritableConverter(): WritableConverter[Float] =
    simpleWritableConverter[Float, FloatWritable](_.get)

  implicit def booleanWritableConverter(): WritableConverter[Boolean] =
    simpleWritableConverter[Boolean, BooleanWritable](_.get)

  implicit def bytesWritableConverter(): WritableConverter[Array[Byte]] = {
    simpleWritableConverter[Array[Byte], BytesWritable] { bw =>
      // getBytes method returns array which is longer then data to be returned
      Arrays.copyOfRange(bw.getBytes, 0, bw.getLength)
    }
  }

  implicit def stringWritableConverter(): WritableConverter[String] =
    simpleWritableConverter[String, Text](_.toString)

  implicit def writableWritableConverter[T <: Writable](): WritableConverter[T] =
    new WritableConverter[T](_.runtimeClass.asInstanceOf[Class[T]], _.asInstanceOf[T])
}

/**
 * A class encapsulating how to convert some type T to Writable. It stores both the Writable class
 * corresponding to T (e.g. IntWritable for Int) and a function for doing the conversion.
 * The Writable class will be used in `SequenceFileRDDFunctions`.
 */
private[spark] class WritableFactory[T](
    val writableClass: ClassTag[T] => Class[_ <: Writable],
    val convert: T => Writable) extends Serializable

object WritableFactory {

  private[spark] def simpleWritableFactory[T: ClassTag, W <: Writable : ClassTag](convert: T => W)
    : WritableFactory[T] = {
    val writableClass = implicitly[ClassTag[W]].runtimeClass.asInstanceOf[Class[W]]
    new WritableFactory[T](_ => writableClass, convert)
  }

  implicit def intWritableFactory: WritableFactory[Int] =
    simpleWritableFactory(new IntWritable(_))

  implicit def longWritableFactory: WritableFactory[Long] =
    simpleWritableFactory(new LongWritable(_))

  implicit def floatWritableFactory: WritableFactory[Float] =
    simpleWritableFactory(new FloatWritable(_))

  implicit def doubleWritableFactory: WritableFactory[Double] =
    simpleWritableFactory(new DoubleWritable(_))

  implicit def booleanWritableFactory: WritableFactory[Boolean] =
    simpleWritableFactory(new BooleanWritable(_))

  implicit def bytesWritableFactory: WritableFactory[Array[Byte]] =
    simpleWritableFactory(new BytesWritable(_))

  implicit def stringWritableFactory: WritableFactory[String] =
    simpleWritableFactory(new Text(_))

  implicit def writableWritableFactory[T <: Writable: ClassTag]: WritableFactory[T] =
    simpleWritableFactory(w => w)

}

This snippet took 0.09 seconds to highlight.

Back to the Entry List or Home.

Delete this entry (admin only).